
VIRTUALISATION ET
OPENSTACK

ARNAUD MORIN

OBJECTIFS
Virtualisation•
Cloud•
OpenStack•

VIRTUALISATION

OBJECTIFS
Principes et intérêts•
Vocabulaire•
Vue d'ensemble des solutions dispo•

DÉFINITION

DÉFINITION
Selon wikipedia :

La virtualisation consiste à faire fonctionner un ou
plusieurs systèmes d’exploitation comme un simple

logiciel, sur un ou plusieurs ordinateurs (serveurs), au
lieu de ne pouvoir en installer qu’un seul par machine.

PRINCIPES DE POPEK ET GOLDBERG
En 1974, Popek et Goldberg sont deux chercheurs qui

ont introduits des conditions pour qu’un système
supporte la virtualisation :

PRINCIPES DE POPEK ET GOLDBERG
En 1974, Popek et Goldberg sont deux chercheurs qui

ont introduits des conditions pour qu’un système
supporte la virtualisation :

PRINCIPES DE POPEK ET GOLDBERG
En 1974, Popek et Goldberg sont deux chercheurs qui

ont introduits des conditions pour qu’un système
supporte la virtualisation :

PRINCIPES DE POPEK ET GOLDBERG
En 1974, Popek et Goldberg sont deux chercheurs qui

ont introduits des conditions pour qu’un système
supporte la virtualisation :

HISTORIQUE
1946 - Premiers ordinateurs "Turing-
complet" (ex : ENIAC)

•

1958 - Ordinateurs multitaches (Gamma 60
de Bull) : faire tourner plusieurs programmes
en même temps, concept proche de la
virtualisation.

•

1972 - IBM Mainframe Virtual Machine
Facility/370 : premier système de "full
virtualisation" !

•

HISTORIQUE
1990 - Emulation de processeurs x86, mac
sur Amiga (pionnier du genre)

•

1999 - VMWare Worsktation, puis Qemu, KVM,
bochs, Xen, etc.

•

2004 - Intel VT-x Les VM ont directement
accès au CPU. Les hyperviseurs ne font plus
d’émulation mais controllent qui a accès au
CPU

•

LES PRINCIPES DE POPEK ET GOLDBERG
SONT RESPECTÉS DEPUIS 2004

SEULEMENT !

INTÉRÊTS DE LA VIRTUALISATION

INTÉRÊTS DE LA VIRTUALISATION
Sécurité : isolation / cloisonement•

INTÉRÊTS DE LA VIRTUALISATION
Sécurité : isolation / cloisonement•
Coût : mutualisation / allocation temporelle•

INTÉRÊTS DE LA VIRTUALISATION
Sécurité : isolation / cloisonement•
Coût : mutualisation / allocation temporelle•
Criticité : sauvegarde / clonagee / migration•

INTÉRÊTS DE LA VIRTUALISATION
Sécurité : isolation / cloisonement•
Coût : mutualisation / allocation temporelle•
Criticité : sauvegarde / clonagee / migration•
Performance : allocation dynamique de
resources

•

COMPRENDRE LA
VIRTUALISATION

CPU X86: LES ANNEAUX DE
PROTECTIONS

LES ANNEAUX DE PROTECTIONS
Le "noyau" linux (ou windows) tourne dans
le ring 0

•

Les "logiciels" utilisateurs tournent dans le
ring 3

•

On passe d'un ring a l'autre en faisant un
"sys call" (SYSENTER)

•

RAPPEL
La virtualisation consiste à faire fonctionner un ou

plusieurs systèmes d’exploitation comme un simple
logiciel

LES ANNEAUX DE PROTECTIONS
L'hyperviseur tourne dans le ring 0•
Les machines virtuelles dans le ring 3
(simples logiciels)

•

emulateur

VM 1 OS

User Space

Kernel Space

Host OS

ring 3

ring 0

VM 2 OS

User Space

Kernel Space

Kernel Space

User Space

matériel

La VM tourne comme un simple logiciel (ring 3).

Principe de Popek et Goldberg :

équivalence : OK•
efficacité : KO•
contrôle : OK•

CE N'EST PAS DE LA VIRTUALISATION !
On parle dans ce cas d'émulation

EMULATION
Pros:

Cons:

Bonne isolation entre les OS invités•
Cohabitation d’architecture CPU et OS
hétérogènes

•

Pas très performant : l'émulation provoque
beaucoup d'overhead

•

RING -1
2004 : Intel et AMD ont ajouté à leurs processeurs des

instructions CPU supplémentaires pour aider à la
virtualisation :

Ces nouvelles instructions sont regroupées dans le
Ring -1"

Intel VT-x•
AMD-V•

VM 1 OS

User Space

Kernel Space

Host OS

ring 3

ring 0

VM 2 OS

User Space

Kernel Space
Kernel Space

hypervisor

User Space

ring -1

matériel

VIRTUALISATION
La VM à accès au ring 0.

Principe de Popek et Goldberg :

équivalence : OK•
efficacité : OK•
contrôle : OK•

CONTAINERS

container daemon

container 1

User Space

Host OS

ring 3

ring 0

container 2

User Space

Kernel Space

User Space

matériel

CONTAINERS
Ce n'est pas de la virtualisation.

Principe de Popek et Goldberg :

équivalence : KO•
efficacité : OK•
contrôle : OK•

LES MODELES DE VIRTU

e�ficacité

co
nt
ra
in
te
s

Virtualisation

Émulation

Containers

Snes9x
DuckStation

Dolphin

Qemu/KVM
VirtualBox

Xen
HyperV
ESXi

Docker
Containerd

LXC
OpenVZ

CLOUD

CLOUD
Principes et intérêts•
Vocabulaire et philosohie•
Vue d'ensemble des solutions dispo•

LE CLOUD C'EST LARGE !
Calcul / Virtualisation•
Stockage•
Abstraction du matériel•
Service et facturation à la demande•
Accès par des API REST•
Flexibilité, élasticité•

WHAT YOU WANT AS A SERVICE
Principalement :

IaaS : Infrastructure as a Service•
PaaS : Platform as a Service•
SaaS : Software as a Service•

Mais aussi :

Database as a Service•
Network as a Service•
Firewall as a Service•
Load Balancer as a Service•
DNS as a Service•
...•

TYPE DE CLOUD
Cloud Public : fourni par un hébergeur à des
clients (OVHcloud, AWS, GCP, Azure,
Dropbox, etc.)

•

Cloud Privé : interne a une entreprise•
Cloud Hybride : utilisation de ressources
public au sein d'un cloud privé

•

POURQUOI FAIRE DU CLOUD
Coté business :

Baisse des coûts par mutualisation•
Utilisation uniquement des ressources
nécessaires

•

POURQUOI FAIRE DU CLOUD
Coté tech :

Accès par des API / automatisation / agilité•
Reproductibilité•
Architectures résiliantes et scalables•
Abstraction des couches basses•

CLOUD PROVIDERS

VIRTUALISATION DANS LE CLOUD
Le cloud computing repose souvent sur la

virtualisation.

Le plus souvent en se basant sur l'hyperviseur Open
Source QEMU/KVM

STOCKAGE DANS LE CLOUD
On distingue deux types de stockage : le block storage

et l'object storage

BLOCK STORAGE
Stockage bas niveau

Utilisé pour créer des disques virtuels (raw
devices e.g. /dev/vdb)

•

Compatible avec n'importe quel systeme de
fichier

•

Latence faible, idéal pour optimiser les I/O•
E.G. Amazon EBS, OpenStack Cinder•

OBJECT STORAGE
Stockage haut niveau

Accessible via une API HTTP•
Utilisé pour les fichiers non structurés
(images, videos, logs, etc.)

•

Optimisé pour la scalabilité et la durabilité•
E.G. Amazon S3, OpenStack Swift•

LEXIQUE DU CLOUD : LES MOTS CLÉS À
MAÎTRISER

API REST
Interface pour interagir avec les services cloud via des

requêtes HTTP (GET, POST, etc.).

Comme un "menu de restaurant" : tu
commandes (GET /instances) et tu

reçois une réponse (liste des instances).

API DE METADATA/USERDATA
API interne permettant à une instance cloud d’accéder
dynamiquement à des informations de configuration

ou des scripts au démarrage, généralement accessible
à l’URL 169.254.169.254.

Comme une "boîte aux lettres"
accessible depuis une instance : les

metadata sont les courriers
administratifs alors que les userdata

sont des colis personnels.

CLOUD-INIT
Outil pour initialiser une instance (ex: créer un

utilisateur, installer des paquets). Il récupère les
informations depuis l'API de metadata/userdata.

Comme un "assistant de première
configuration" : il prépare la machine à

ton arrivée.

IMAGE
Modèle préconfiguré d’un système d’exploitation (OS)

ou d’une application, utilisé pour démarrer des
instances.

Comme une "clé USB bootable" :
permet de démarrer une machine avec

un OS déjà installé (ex: Debian,
Ubuntu, CentOS).

INSTANCE
Machine virtuelle (VM) ou conteneur exécutant un OS

ou une application, créée à partir d’une image.

Une "boîte" avec CPU, RAM, disque,
port.

FLAVOR
Modèles prédéfinis de ressources (CPU, RAM, disque)

pour une instance.

Comme des "menus" au restaurant :
petit (1 CPU, 2 Go RAM), moyen (4 CPU,

8 Go RAM), etc. Plus c'est gros, plus
c'est cher !

VOLUME
Disques durs virtuels persistants,

attachables/détachables à des instances. Se repose
sur une technologie de block storage.

Comme un "disque dur externe" : on
peut l'attacher sur n'importe quelle

instance.

FLOATING IP
Adresses IP publique flottante, attachable à une

instance pour un accès internet.

Comme un "numéro de téléphone
portable" : on peut le transférer d’un

appareil à un autre.

SECURITY-GROUP
Règles de pare-feu pour contrôler le trafic réseau

vers/entre les instances.

Comme un "videur de boîte de nuit" : il
autorise ou bloque l’accès selon des

règles.

KEYPAIR
Clés SSH publiques/privées pour une connexion

sécurisée aux instances.

Comme une "clé et une serrure" : la clé
privée ouvre la porte (instance)
verrouillée par la clé publique.

OPENSTACK

Suite logicielle Open Source pour construire un cloud.

HISTOIRE
Projet démarré en 2010 suite a la fusion d'un projet de

la (cloud computing) et d'un projet de

 (cloud object storage)

Développé en et distribué sous licence libre

Cycle de de 2 releases par an

Les dernières releases :

2025.1 (epoxy)•
2025.2 (flamingo)•
2026.1 (gazpacho) - prévu pour avril•

LES 4 OPENS
Open Source•
Open Design•
Open Development•
Open Community•

OVERVIEW

PRINCIPAUX PROJETS
Compute : Nova •
Network : Neutron •
Image : Glance •
Volume : Cinder •
Authentication : Keystone •
Object Storage : Swift •

MAIS AUSSI
OpenStack ne pourrait pas fonctionner sans d'autres

briques Open Source, comme par ex. :
Block storage : (pour cinder /
volumes)

•

Base de données : •
Bus de messages : •
etc.•

INSTALLATION D'OPENSTACK
Installer OpenStack est relativement simple :

La complexité réside dans la configuration et
l'imbrication des différents éléments entre eux.

Beaucoup d'options sont possibles et nécessite une
forte expertise.

$ pip install nova

$ pip install neutron

etc.

UTILISATION D'OPENSTACK
Pour discuter avec un Cloud OpenStack, le plus simple

est d'installer et utiliser le client officiel :

Ce client permet de faire des requêtes HTTP aux
differentes API REST du cloud OpenStack.

$ pip install python-openstackclient

FICHIER OPENRC
Le client openstack nécessite des paramètres pour se

connecter au cloud OpenStack.

A minima, il faut :

L'URL de l'API keystone•
Un login•
Un mot de passe•
Un identifiant project•

EXEMPLE DE FICHIER OPENRC
$ cat openrc

export OS_AUTH_URL="https://auth.cloud.ovh.net/v3/"

export OS_TENANT_ID="0d899a6f76e74760a06919533ed0ec52"

export OS_USERNAME="user"

export OS_PASSWORD="password"

CATALOG
La premiere requête que nous pouvons faire avec le
client openstack est une requête aupres du service

keystone pour récupérer le catalog et ainsi découvrir
les autres API disponibles dans notre cloud.

$ openstack catalog list

LISTE DES INSTANCES
Si le service nova (compute) est disponible sur le cloud,

il devient possible de lister les instances :
$ openstack server list

LISTE DES IMAGES
Si le service glance (image) est disponible sur le cloud,

il devient possible de lister les images :
$ openstack image list

LISTE DES RÉSEAUX
Si le service neutron (network) est disponible sur le

cloud, il devient possible de lister les réseaux :
$ openstack network list

ETC.
Beaucoup d'autres requêtes peuvent être faite.

Comme par ex. booter une nouvelle instance

etc.

Création d'une nouvelle instance

$ openstack server create \

 --flavor small \

 --image 'Debian 13' \

 --net public \

 mon-instance

INTERFACE WEB
Il est aussi possible de piloter OpenStack à partir d'une

interface web.

...OU VIA DU CODE
Exemple avec du code terraform

resource "openstack_compute_instance_v2" "mon_instance" {

 name = "mon-instance"

 image_name = "Debian 13"

 flavor_name = "small"

 network {

 name = "public"

 }

}

QUESTIONS ?

