ANSIBLE

AAAAAAAAAAA

ANSIBLE IS POWERFUL

e orchestration
e deployment
e configuration

WHY USING SUCH TOOL?

e Manage afleet of nodes
= Pet versus Cattle
e Automate deployment of software
= Continuous integration and delivery
= Reproductibility
e Configuration holding
= Make sure that the system is always in a good
state
e Laziness

VOCABULARY

e Host inventory
e Tasks
e Modules

Playbooks
Roles

dempotent

MAIN CONFIG FILE

e /etc/ansible/hosts
e /etc/ansible/ansible.cfg

ANSIBLE INVENTORY

FROM SIMPLE HOST INVENTORY...

$ cat /etc/ansible/hosts
neutron

glance
192.168.1.81

.. 10 GOMPLEX DYNAMIC INVENTORIES

e pulling inventory dynamically from cloud (such as Ope

e more info
https://docs.ansible.com/ansible/2.5/user_guide/intro.
use-of-inventory-script

https://docs.ansible.com/ansible/2.5/user_guide/intro_dynamic_inventory.html#explicit-use-of-inventory-script
https://docs.ansible.com/ansible/2.5/user_guide/intro_dynamic_inventory.html#explicit-use-of-inventory-script

ANSIBLE COMMAND
LINE TOOLS

MAIN COMMANDS

ansi
ansi
ansi
ansi
ansi
ansi
ansi
ansi
ansi

O O O 0O 0O O O 0O 0O

e
e-config
e-console
e-doc
e-galaxy
e-inventory
e-playbook
e-pull
e-vault

FIRST AD HOC COMMAND

$ ansible all -m ping
192.168.1.81 | SUCCESS => {
"changed": false,

||pingll: Ilpongll

}

glance | SUCCESS => {
"changed": false,
||pingll: Ilpongll

}

neutron | SUCCESS => {

"changed": false,
Ilpingll: Ilpongll

YOU CAN ALSO EXECUTE COMMAND ONLY
ON ONE NODE ...

$ ansible 192.168.1.81 -m ping
192.168.1.81 | SUCCESS => {
"changed": false,

Ilpingll: Ilpongll

.. OR EXECUTE SHELL COMMAND ON ALL
NODES

$ ansible all -m shell -a "/bin/echo hello"
192.168.1.81 | CHANGED | rc=0 >>
hello

neutron | CHANGED | rc=0 >>
hello

glance | CHANGED | rc=0 >>
hello

ANSIBLE-CONSOLE

run interactive ah hoc commands against a chosen
Inventory

$ ansible-console all
Welcome to the ansible console.
Type help or ? to list commands.

root@all (3)[f:5]% uname -r
neutron | CHANGED | rc=0 >>
4.4.0-138-generic

glance | CHANGED | rc=0 >>
4.4.0-138-generic

192.168.1.81 | CHANGED | rc=0 >>
4.4.0-138-generic

root@all (3)[T:5]%

ANSIBLE-GALAXY

Search/download role from ansible galaxy (like a store)

$ ansible-galaxy search asterisk

ansible-galaxy install dgnest.asterisk

downloading role 'asterisk', owned by dgnest

downloading role from https://github.com/dgnest/ansible-role-as
extracting dgnest.asterisk to /root/.ansible/roles/dgnest.aster
dgnest.asterisk (0.0.5) was installed successfully

ANSIBLE-INVENTORY

used to display or dump the configured inventory as
Ansible sees it

$ ansible-inventory --yaml --1list
all:
children:
ungrouped:

hosts:
192.168.1.81: {}
glance: {}
neutron: {}

ANSIBLE-PLAYBOOK

the tool to run Ansible playbooks, which are a
configuration and multinode deployment system
$ ansible-playbook play.yml --1list-tasks

playbook: play.yml

play
tasks:
install cowsay and steam locomotive TAGS: []

ANSIBLE-PULL

pulls playbooks from a VCS repo and executes them for
the local host

ANSIBLE-VAULT

encryption/decryption utility for Ansible data files

FOCUS ON PLAYBOOKS

PLAYBOOKS

YAML files

playbooks are composed of one or more plays
plays are composed of roles and tasks

roles are composed of tasks

tasks are based on modules to perform specific
actions on nodes

PLAYBOOKS

e Applied to a group af node
e Allow orchestration between nodes

EXAMPLE

- hosts: localhost
tasks:
- name: install cowsay and sl

apt:
name: ['cowsay', 'sl']
state: latest

ANSIBLE-PLAYBOOK PLAY.YML

er:/etc/ansible/playbooks# ansible-playbook play.yml

ANSIBLE ROLES

Roles are ways of automatically do tasks that are
related (such as installing and configuring a software)

They are also nice for:

e sharing with other (or use others roles - see ansible-

galaxy)
e reuse (you can use same roles in multiples plays)

EXAMPLE

$ cat /etc/ansible/playbooks/play.yml

- hosts: localhost
roles:
- useless

$ cat /etc/ansible/roles/useless/tasks/main.yml

- name: install cowsay and steam locomotive
apt:
name: ['cowsay', 'sl']
state: latest

VARIABLES

DEFINITION

Variables can be defined in

* inventory
e playbooks
e roles

e on CLI
e retrieved from facts

foo:
fieldl:

field2:

foo.field1l

foo['field

one
two

1']

DEFINING A VARIABLE

General yaml syntax

Accessing it

EXAMPLE IN A PLAYBOOK

In a playbook

- hosts: webservers
vars:
http_port: 80

vars_files:
- /vars/external_vars.yml

From CLI

ansible-playbook bla.yml --extra-vars "foo=bar truc=bidule"

USING VARIABLES WITH JINJAZ

Ansible is using Jinja2 as templating system.

Example:

FACTS: SPECIAL VARIABLES

Ansible is collectings some facts when connecting to
the nodes.

Those facts are then available as variables, like any
other.

Example:

FACTS: SPECIAL VARIABLES

See all gathered facts:

REGISTERING VARIABLES

You can register variables from result of a task.

Example

- hosts: web_servers

tasks:

- shell: /usr/bin/foo

register: foo_result
ignore_errors: True

- shell: /usr/bin/bar
when: foo result.rc == 5

CONDITIONALS, LOOPS
AND BLOCKS

THE WHEN STATEMENT

Use very often to execute tasks only if required

Example

tasks:
- name: "shut down Debian flavored systems"

command: /sbin/shutdown -t now
when: ansible_facts['os_family'] == "Debian"

LOOPS

Sometime, you want to execute the same task multiple
times with differents values

Example

tasks:
- name: add several users
user:
name: "{{ item }}"
state: present

groups: "wheel"
loop:
- testuserl
- testuser?2

BLOCKS

Blocks allow for logical grouping of tasks and in play
error handling (try/catch)

Example

tasks:
- name: Handle the error
block:
- debug:
msg: 'I execute normally'
- name: 1 force a failure
command: /bin/false

- debug:
msg: 'I never execute, due to the above task failing, :
rescue:
- debug:
msg: 'I caught an error, can do stuff here to fix 1it, :

MORE INFC

https://docs.ansible.com/ansible/latest/

https://docs.ansible.com/ansible/latest/

