
ANSIBLEANSIBLE
ARNAUD MORINARNAUD MORIN

1

ANSIBLE IS POWERFULANSIBLE IS POWERFUL
orchestration
deployment
configuration

2 . 1

WHY USING SUCH TOOL?WHY USING SUCH TOOL?
Manage a fleet of nodes

Pet versus Cattle
Automate deployment of software

Continuous integration and delivery
Reproductibility

Configuration holding
Make sure that the system is always in a good
state

Laziness
2 . 2

VOCABULARYVOCABULARY
Host inventory
Tasks
Modules
Playbooks
Roles
Idempotent

2 . 3

MAIN CONFIG FILEMAIN CONFIG FILE
/etc/ansible/hosts
/etc/ansible/ansible.cfg

2 . 4

ANSIBLE INVENTORYANSIBLE INVENTORY

3 . 1

FROM SIMPLE HOST INVENTORY...FROM SIMPLE HOST INVENTORY...
$ cat /etc/ansible/hosts
neutron # we can use names
glance
192.168.1.81 # but also ip addresses

3 . 2

... TO COMPLEX DYNAMIC INVENTORIES... TO COMPLEX DYNAMIC INVENTORIES
pulling inventory dynamically from cloud (such as Open
more info
https://docs.ansible.com/ansible/2.5/user_guide/intro_
use-of-inventory-script

3 . 3

https://docs.ansible.com/ansible/2.5/user_guide/intro_dynamic_inventory.html#explicit-use-of-inventory-script
https://docs.ansible.com/ansible/2.5/user_guide/intro_dynamic_inventory.html#explicit-use-of-inventory-script

ANSIBLE COMMANDANSIBLE COMMAND
LINE TOOLSLINE TOOLS

4 . 1

MAIN COMMANDSMAIN COMMANDS
ansible
ansible-config
ansible-console
ansible-doc
ansible-galaxy
ansible-inventory
ansible-playbook
ansible-pull
ansible-vault

4 . 2

FIRST AD HOC COMMANDFIRST AD HOC COMMAND
$ ansible all -m ping
192.168.1.81 | SUCCESS => {
 "changed": false,
 "ping": "pong"
}
glance | SUCCESS => {
 "changed": false,
 "ping": "pong"
}
neutron | SUCCESS => {
 "changed": false,
 "ping": "pong"
}

4 . 3

YOU CAN ALSO EXECUTE COMMAND ONLYYOU CAN ALSO EXECUTE COMMAND ONLY
ON ONE NODE ...ON ONE NODE ...

$ ansible 192.168.1.81 -m ping
192.168.1.81 | SUCCESS => {
 "changed": false,
 "ping": "pong"
}

4 . 4

... OR EXECUTE SHELL COMMAND ON ALL... OR EXECUTE SHELL COMMAND ON ALL
NODESNODES

$ ansible all -m shell -a "/bin/echo hello"
192.168.1.81 | CHANGED | rc=0 >>
hello

neutron | CHANGED | rc=0 >>
hello

glance | CHANGED | rc=0 >>
hello

4 . 5

ANSIBLE-CONSOLEANSIBLE-CONSOLE
run interactive ah hoc commands against a chosen

inventory
$ ansible-console all
Welcome to the ansible console.
Type help or ? to list commands.

root@all (3)[f:5]$ uname -r
neutron | CHANGED | rc=0 >>
4.4.0-138-generic

glance | CHANGED | rc=0 >>
4.4.0-138-generic

192.168.1.81 | CHANGED | rc=0 >>
4.4.0-138-generic

root@all (3)[f:5]$

4 . 6

ANSIBLE-GALAXYANSIBLE-GALAXY
Search/download role from ansible galaxy (like a store)

$ ansible-galaxy search asterisk
...

$ ansible-galaxy install dgnest.asterisk
- downloading role 'asterisk', owned by dgnest
- downloading role from https://github.com/dgnest/ansible-role-as
- extracting dgnest.asterisk to /root/.ansible/roles/dgnest.aster
- dgnest.asterisk (0.0.5) was installed successfully

4 . 7

ANSIBLE-INVENTORYANSIBLE-INVENTORY
used to display or dump the configured inventory as

Ansible sees it
$ ansible-inventory --yaml --list
all:
 children:
 ungrouped:
 hosts:
 192.168.1.81: {}
 glance: {}
 neutron: {}

4 . 8

ANSIBLE-PLAYBOOKANSIBLE-PLAYBOOK
the tool to run Ansible playbooks, which are a

configuration and multinode deployment system
$ ansible-playbook play.yml --list-tasks

playbook: play.yml

 play #1 (all): all TAGS: []
 tasks:
 install cowsay and steam locomotive TAGS: []

4 . 9

ANSIBLE-PULLANSIBLE-PULL
pulls playbooks from a VCS repo and executes them for

the local host

4 . 10

ANSIBLE-VAULTANSIBLE-VAULT
encryption/decryption utility for Ansible data files

4 . 11

FOCUS ON PLAYBOOKSFOCUS ON PLAYBOOKS

5 . 1

PLAYBOOKSPLAYBOOKS
YAML files
playbooks are composed of one or more plays
plays are composed of roles and tasks
roles are composed of tasks
tasks are based on modules to perform specific
actions on nodes

5 . 2

PLAYBOOKSPLAYBOOKS
Applied to a group af node
Allow orchestration between nodes

5 . 3

EXAMPLEEXAMPLE

- hosts: localhost # Apply only to localhost
 tasks:
 - name: install cowsay and sl # Use apt module
 apt:
 name: ['cowsay', 'sl'] # Ensure that those packages
 state: latest # are installed

5 . 4

ANSIBLE-PLAYBOOK PLAY.YMLANSIBLE-PLAYBOOK PLAY.YML

5 . 5

ANSIBLE ROLESANSIBLE ROLES
Roles are ways of automatically do tasks that are

related (such as installing and configuring a software)

They are also nice for:

sharing with other (or use others roles - see ansible-
galaxy)
reuse (you can use same roles in multiples plays)

5 . 6

EXAMPLEEXAMPLE
$ cat /etc/ansible/playbooks/play.yml

- hosts: localhost
 roles:
 - useless

$ cat /etc/ansible/roles/useless/tasks/main.yml

- name: install cowsay and steam locomotive
 apt:
 name: ['cowsay', 'sl']
 state: latest

5 . 7

VARIABLESVARIABLES

6 . 1

DEFINITIONDEFINITION
Variables can be defined in

inventory
playbooks
roles
on CLI
retrieved from facts

6 . 2

DEFINING A VARIABLEDEFINING A VARIABLE
General yaml syntax

Accessing it

foo:
 field1: one
 field2: two

foo.field1
or
foo['field1']

6 . 3

EXAMPLE IN A PLAYBOOKEXAMPLE IN A PLAYBOOK
In a playbook

From CLI

- hosts: webservers
 vars:
 http_port: 80
 # or from external file
 vars_files:
 - /vars/external_vars.yml

ansible-playbook bla.yml --extra-vars "foo=bar truc=bidule"

6 . 4

USING VARIABLES WITH JINJA2USING VARIABLES WITH JINJA2
Ansible is using Jinja2 as templating system.

Example:
Foo value is {{ foo }}

6 . 5

FACTS: SPECIAL VARIABLESFACTS: SPECIAL VARIABLES
Ansible is collectings some facts when connecting to

the nodes.

Those facts are then available as variables, like any
other.

Example:
My hostname is {{ ansible_facts['nodename'] }}

6 . 6

FACTS: SPECIAL VARIABLESFACTS: SPECIAL VARIABLES
See all gathered facts:

ansible hostname -m setup

6 . 7

REGISTERING VARIABLESREGISTERING VARIABLES
You can register variables from result of a task.

Example
- hosts: web_servers

 tasks:

 - shell: /usr/bin/foo
 register: foo_result
 ignore_errors: True

 - shell: /usr/bin/bar
 when: foo_result.rc == 5

6 . 8

CONDITIONALS, LOOPSCONDITIONALS, LOOPS
AND BLOCKSAND BLOCKS

7 . 1

THE WHEN STATEMENTTHE WHEN STATEMENT
Use very often to execute tasks only if required

Example
tasks:
 - name: "shut down Debian flavored systems"
 command: /sbin/shutdown -t now
 when: ansible_facts['os_family'] == "Debian"

7 . 2

LOOPSLOOPS
Sometime, you want to execute the same task multiple

times with differents values

Example
tasks:
 - name: add several users
 user:
 name: "{{ item }}"
 state: present
 groups: "wheel"
 loop:
 - testuser1
 - testuser2

7 . 3

BLOCKSBLOCKS
Blocks allow for logical grouping of tasks and in play

error handling (try/catch)

Example
tasks:
 - name: Handle the error
 block:
 - debug:
 msg: 'I execute normally'
 - name: i force a failure
 command: /bin/false
 - debug:
 msg: 'I never execute, due to the above task failing, :-
 rescue:
 - debug:
 msg: 'I caught an error, can do stuff here to fix it, :-

7 . 4

MORE INFOMORE INFO
https://docs.ansible.com/ansible/latest/

8

https://docs.ansible.com/ansible/latest/

QUESTIONS ?QUESTIONS ?

9

